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Abstract
In this paper we numerically study the probability Pac of occurrence of
car accidents in the Nagel–Schreckenberg (NS) model with open boundary
condition. In the deterministic NS model, numerical results show that there
exists a critical value of extinction rate β above which no car accidents occur,
and below which the probability Pac is independent of the speed limit vmax and
the injection rate α, but only determined by the extinction rate β. In the non-
deterministic NS model, the probability Pac is a non-monotonic function of β

in the region of low β value, while it is independent of β in the region of high β

value. The stochastic braking not only reduces the occurrence of car accidents,
but splits degenerate effects of vmax on the probability Pac. Theoretical analyses
give an agreement with numerical results in the deterministic NS model and in
the non-deterministic NS model with vmax = 1 in the case of low β value region.
Qualitative differences between open and periodic systems in the relations of
Pac to the bulk density ρ imply that various correlations may exist between the
two systems.

PACS numbers: 89.40.Bb, 05.40.−a, 45.70.Vn, 05.60.−k

1. Introduction

Recently, traffic problems have attracted much attention from scientists. Traffic flow is a
kind of many-body system of strongly interacting cars which cannot be described in the
framework of standard equilibrium statistical mechanics. Recent studies revealed complex
physical phenomena among which are hysteresis, synchronization of flow, wide moving jams

0305-4470/04/174743+10$30.00 © 2004 IOP Publishing Ltd Printed in the UK 4743

http://stacks.iop.org/ja/37/4743


4744 X-Q Yang et al

and phase transitions [1, 2]. On the other hand, traffic jams and traffic accidents have become
significant problems in a modern society. Jams often appear in densely populated areas where
the capacity of the existing traffic network is exceeded. Cars in jams may emit considerable
amounts of toxic gases which are harmful to the environment and human health. Therefore,
many modelling approaches have been proposed to simulate traffic systems and to design
on-line controls for efficient traffic optimization [3].

Most recently, the occurrence of car accidents has been studied within the framework
of cellular automaton (CA) models with periodic boundary conditions. With the help of the
conditions for the occurrence of car accidents first proposed by Boccara et al [4], simulations
of the probability for car accidents to occur have been presented in the NS model and the
Fukui–Ishibashi (FI) model [5]. And analytical expressions for car accidents have also been
provided in the model with vmax = 1 in the case of p �= 0 [6], and without considering
stochastic braking [7], respectively. The relations of car accidents to traffic flow and stopped
cars in the periodic system have also been studied by us [8]. However, the probability for car
accidents to occur in an open traffic system has not been discussed yet.

The most significant difference between systems with open and periodic boundary
conditions is car density. In a system with periodic boundary conditions, car density is
considered an adjustable parameter. However, in the case of open boundary condition, a
traffic system has two adjustable parameters, namely, the injection rate and the extinction rate
which characterize a car moving in and out of the system respectively, and the car density in
the system is only a derived parameter. Moreover, compared with periodic systems, numerical
studies imply that open systems show different behaviour of quantities such as global density,
current, density profile and even microscopic structure of jammed phases [9–15]. Therefore,
these differences give us an impetus to study the probability of occurrence of car accidents in
more realistic open traffic systems.

In this paper, we do not really study car accidents. We numerically investigate the
probability of occurrence of dangerous situations in which careless drivers might cause
accidents, within the CA model with open boundary conditions, including deterministic and
non-deterministic cases. According to the three necessary conditions for the occurrence of car
accidents [4] and the results of [8], the probability of occurrence of car accidents is directly
related to traffic flow and stopped cars; therefore, the studies on the probability can lead us to
understand traffic flow. Secondly, if accidents really occur, the ‘wrecked’ cars can interrupt
traffic. In this case, car accidents can reduce traffic flow, but traffic flow is directly related to
car accidents. This complex situation should be further investigated. The paper is organized
as follows. Section 2 is devoted to the description of the model and the conditions for the
occurrence of accidents. In section 3, numerical studies of car accidents are given, and the
effects of stochastic braking and speed limits are considered. A phenomenological theory is
also presented to describe the computer simulations. Finally, the results are summarized in
section 4.

2. Model and car accidents

Our studies are based on a one-dimensional cellular automaton model introduced by Nagel and
Schreckenberg [16]. The road is divided into L cells of equal size numbered i = 1, 2, . . . , L

and the time is discrete. Each site can be either empty or occupied by a car with the integer
speed v = 0, 1, 2, . . . vmax, where vmax is the speed limit. The speed v is mainly determined
by the distance from the car ahead. When the distance increases, the car accelerates; when
the distance decreases, the car slows down. Let d denote the distance from the car ahead. At
each time step, the following four steps are performed simultaneously for all cars:
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(1) acceleration: increase v by 1 if v < vmax.
(2) slowing down: decrease v to d if v > d.
(3) stochastic braking: decrease v by unity with probability p if v > 0.
(4) movement: move the car v sites forward.

The acceleration under the speed limit and the slowing down due to the car ahead
are prescribed by the first two rules. The model parameter p in the third rule describes
individual velocity fluctuations due to delayed acceleration. Without the third rule, the model
is deterministic. Iterations over these simple rules already give realistic results.

Recent studies have shown the way in which open boundary conditions are implemented
to alter the behaviour of the model [18, 19]. However in the present paper, we mainly study
the probability for car accidents to occur; therefore, open boundary conditions are defined in
the following way [13, 14], in which the model shows the same relationship between traffic
flow and bulk density as in the case of periodic boundary conditions, except that the phase of
maximum flow is absent [12]. At site i = 0 which means out of the system, a car with speed
v = vmax is created with probability α. The car immediately moves forward in accordance
with the NS rule. If the site i = 1 is occupied by a car, the injected car at site i = 0 is
deleted. At i = L + 1 a ‘block’ occurs with probability 1 − β and causes a slowing down of
the cars at the end of the system. Otherwise, with probability β, the car simply moves out of
the system. The model with open boundary conditions has four basic controlling parameters
among which are the speed limit vmax, the stochastic braking probability p, the injection rate
α and the extinction rate β.

In the basic NS model, car accidents will not occur, because the second rule of the update
is designed to avoid accidents. The safety distance of drivers is respected in the driving
scheme. However, in real traffic car accidents occur most likely due to careless driving of the
drivers who do not maintain the safety distance. More precisely, if the car ahead is moving,
expecting it to be moving at the next time step, a careless driver has a tendency to drive as fast
as possible and increases the safety velocity given in the second rule of update by one unit
with a probability p′. At the next time step, it will arrive at the position of the moving car
ahead. If the moving car ahead suddenly stops, collision between the two cars takes place.
The necessary conditions for determining the occurrence of car accidents which have been
proposed by Boccara et al read as follows [4]. The first condition is that d � vmax, which
means that a car will arrive at the site of the car ahead by the next time step. The second
condition is that a car ahead is moving. And the third is that the moving car ahead suddenly
stops at the next time step.

Without considering stochastic braking in the periodic system, the velocity of a car is
equal to the number of empty cells in front of it when the car density is larger than the
critical density 1

1+vmax
; therefore, when the three necessary conditions for the occurrence of

car accidents are simultaneously satisfied, the cars following can reach the positions of the
stopped cars ahead and car collisions occur if the velocity of the cars following increases by
one unit. In the presence of stochastic braking, even if the number of empty cells between
two neighbouring cars is less than the speed limit vmax, with the increase in safety velocity
given in the second update rule, the cars following fail to reach the position of the stopped
cars ahead, because of being randomly delayed, while they must collide with the stopped
cars ahead when braking is not considered. Thus, to correctly determine car accidents caused
by careless drivers, we propose modified accident conditions which are applicable for both
deterministic and non-deterministic systems [17]. The first condition is that over the iterations
of rules (1)–(3), the velocity of a car is exactly equal to the number of empty cells in front of
it, which means that the car can reach the position of the car ahead if the velocity of the car
driven by the careless driver increases by one unit. The second condition is there is a moving
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Figure 1. Probability Pac (scaled by p′) as a function of extinction rate β in the deterministic
NS model for the case α = 1. Solid lines correspond to analytical results, and symbol data are
obtained from numerical simulations.

car ahead. The third condition is that the moving car ahead suddenly stops. If the above
three conditions are satisfied simultaneously and the velocity of the cars following increases
by unity with probability p′, collision between two cars will occur. These three necessary
conditions for car accidents are also applicable for the open system.

When the three necessary conditions are met simultaneously, dangerous situations for the
occurrence of car accidents may arise. If the velocity of the following cars driven by careless
drivers increases by one unit with probability p′, a car accident will take place. Obviously,
the probability of car accidents is proportional to the occurrence of dangerous situations, the
proportional constant being p′. Usually, the probability per car per time step for car accidents
to occur is denoted by Pac. Apparently, the probability Pac is proportional to the probability
p′; therefore, the probability p′ can be considered a scaling parameter. In the process of
simulations, car accidents do not really occur. These dangerous situations are calculated and
considered as a signal for the occurrence of accidents when the three necessary conditions
are simultaneously satisfied. Here, the system size L = 1024 is selected and the results
are obtained by taking averages over 25 initial configurations and 2 × 104 time steps after
discarding 1 × 105 initial time steps for each configuration.

3. Numerical results and theoretical analysis

3.1. The deterministic case

We investigate the influence of the boundary on the probability Pac for the injection rate α = 1.
Firstly, the stochastic braking of drivers is not considered, i.e., p = 0. Figure 1 shows the
accident probability Pac as a function of β for various values of vmax. As shown in figure 1,
with the increase in β, the probability increases, reaches a maximum but decreases with further
increase in β. Near β = 0, the value of the probability Pac increases linearly with the increase
in β. However, at a very high extinction rate, a linear drop in the behaviour of the probability
with increasing β is observed in figure 1. According to the first condition for the occurrence of
car accidents, the probability Pac is related to traffic flow. In the case of low extinction rate β,
the stopped cars assume a large value and the value of traffic flow is very small; therefore, the
probability Pac is determined from the value of β linearly. As described in the third condition
for car accidents, Pac is related directly to the suddenly stopped cars, and the number of the
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Figure 2. Probability Pac (scaled by p′) as a function of extinction rate β in the deterministic
NS model with vmax = 1 for various values of injection rate. Solid lines are analytic results, and
symbol data are obtained from numerical simulations.

stopped cars is very small in the case of a high value of β; therefore, the value of Pac decreases
linearly with increasing β.

The most remarkable results of our investigation show that the probability Pac is
independent of the speed limit vmax. In figure 1, the probability for car accidents to occur in
the case of vmax = 2 shows similar behaviour to that in the case of vmax = 1. But in the case
of vmax � 3, there is a critical value of the extinction rate βcv, below which Pac is independent
of the speed limit and shows a scaling behaviour, while above which Pac rapidly decreases to
zero. The position of βcv shifts towards a low value of β with increasing speed limit vmax.
In accordance with previously reported results in [13], we know that the state of a system
is determined by the extinction rate β. In the case of vmax < 3, the state of a system with
injection rate α = 1 is in the jamming phase, while in the case of vmax � 3, the jamming state
exists in the region of low value of β, and free flow lies in the region of high value of β. Let
βcv denote the critical rate. Above βcv, there are no car accidents, because there are no stopped
cars in the free-flow phase of the system. Below βcv, the systems are involved in the jamming
states; therefore, car accidents occur. In the jamming states, the extinction rate β controls the
motion of cars; thus the probability Pac is independent of the speed limit and is controlled by
the extinction rate β.

For α < 1, a discontinuous change in the probability Pac occurs at a critical point βcα above
which the value of Pac decreases abruptly to zero. Below βcα , the values of the probability Pac

for various values of vmax collapse into a single curve. The results are shown in figure 2. The
position of the transition point βcα shifts towards a low value of β with decreasing injection
rate α. According to reports in [11, 13], traffic states in the NS model with open boundary
conditions present a phase transition from a low-density phase to a high-density phase with
increasing β at the transition point βcα for the case of α < 1. Above βcα , there are no stopped
cars, and therefore no car accidents occur. Below βcα , the system exhibits the jamming state
in which the sudden stoppage of cars results in the occurrence of car accidents.

In the low-density phase, no stopped cars exist and therefore no car accidents occur.
However, in the high-density phase, the probability for the occurrence of car accidents is
controlled by the extinction rate β and is independent of the speed limit vmax, as shown in
figures 1 and 2. In the case of large bulk densities, i.e., large values of α and β � 1, car
accidents frequently occur at the right boundary. According to the definition of extinction
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Figure 3. The relation of probability Pac (scaled by p′) to the bulk density ρ in the deterministic
NS model. Symbol data are obtained from computer simulations, and the solid line corresponds
to analytic results. Some values of the probability Pac corresponding to the case vmax > 2 cannot
be observed in certain regions of density.

rate β, the mean waiting time of the last car at site L is T = 1/β [11]. On the other hand, the
last car moves and occupies the last site with probability 1 − β if the safety velocity of the
car increases. According to the definition of the probability Pac, we find that for large α and
β � 1, the probability Pac reads

Pac = p′(1 − β)/T = p′β(1 − β). (1)

In formula (1), the probability Pac is directly related to the probability for a car moving out
of the system or the probability for a car occupying the last site of the system. The product
of two kinds of probabilities means the probability per car for two cars occupying the same
cell simultaneously. As shown in figure 1, theoretical analysis is in good agreement with
numerical results.

Although car density is only a derived parameter and controlled by the injection rate α

and the extinction rate β in open systems, the relations of the probability Pac to the average
car density ρ are similar to those for periodic systems in which car density is an adjustable
parameter. The results are shown in figure 3. We can see in figure 3 that there is a critical
density below which no car accident takes place, and above which the probability Pac is a
non-monotonic function of the average car density ρ. In the high-density region, a scaling
relation is also observed and the probability Pac decreases linearly with the increase in the
average density. The maximum probability shifts towards the low-density region with the
increase in the speed limit. Especially for the cases vmax = 1 and 2, the probability Pac is
similar to that in systems with periodic boundary conditions. But for vmax > 2, as shown in
figure 3, some values of the probability Pac can never be observed in certain regions of density
because the values of the bulk density ρ controlled by extinction rate β cannot be derived
[12, 13].

Quantitatively, the probability Pac in an open system is different from that in a periodic
system, especially in the case of vmax = 1. In fact, an explicit expression for the relation of
the accident probability to the bulk density in the deterministic NS model with vmax = 1 can
easily be obtained. Let ρ denote the bulk density of cars. According to [9], in the limiting
case L → ∞, the density in the high-density phase α > β can be written as

ρ = 1

1 + β
. (2)
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Figure 4. Probability Pac (scaled by p′) as a function of extinction rate β in the non-deterministic
NS model with vmax = 1. Solid lines are obtained from explicit expression (4), and symbol data
are numerical results. The case α = 1 is considered.

Substituting (2) into (1), we find that the probability Pac obeys the following relation:

Pac = p′ (1 − ρ)(2ρ − 1)

ρ2
for ρ � 0.5. (3)

As shown in figure 3, theoretical results are in good agreement with numerical data in the case
of vmax = 1. Since the necessary conditions for car accidents to occur concern states of two
consecutive cars at different time steps, the phenomena of car accidents involve spatial and
temporal correlations, and therefore any success of the phenomenological mean-field theory
is encouraging.

Compared with results for periodic systems, the additional factor 1
ρ

in equation (3) has
never been achieved as the braking probability decreases to zero in periodic systems [6]. In
the NS model with vmax = 1, the maximum distance between a cell occupied by a suddenly
stopped car and a cell where a car driven by a careless driver will collide with the car ahead at
the next time step if the safety velocity increases by one unit must be unity. Thus, the mean
correlative length between flow and stopped cars in the process of car accidents is 1

ρ
. But such

a correlation no longer exists in periodic systems in the case of p = 0. Therefore, we conclude
that the boundary can induce some correlations in the process of car accidents, although the
relationship between traffic flow and bulk density ρ is the same as that in the case of periodic
boundary conditions [12].

3.2. The non-deterministic cases

Next, we study the probability for the occurrence of car accidents when the stochastic braking
behaviour of drivers is considered, i.e., p �= 0. Figure 4 shows the relation of probability Pac

to the extinction rate β in the case of vmax = 1. With increasing β, the value of Pac increases,
reaches a maximum and then decreases with further increase in β. However, when the value
of β is larger than a critical value βcp, the probability Pac is independent of β. With increasing
randomization probability p, the probability Pac is suppressed, and thus the position of β for
the maximum of Pac where car accidents occur most frequently shifts towards the low-value
region of β.

Similar to the previous study of the occurrence of car accidents [8], the probability Pac is
related not only to the stopped cars, but also to traffic flow. For the case vmax = 1, any braking
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Figure 5. Effects of stochastic braking on probability Pac (scaled by p′) in the non-deterministic
NS model with vmax = 5. The case α = 1 is considered.

behaviour can cause the occurrence of stopped cars, therefore resulting in car accidents. With
the increase in the braking probability p, traffic flow decreases, and accordingly the probability
Pac is decreased. In the low-value region of β, traffic flow is very small, and therefore the
probability Pac increases linearly with increasing β. As the value of β increases, and when it
is larger than a critical value βcp with βcp = 1 − √

p, the system is in the maximum current
phase where traffic flow is independent of the extinction rate β and is only dependent on the
braking probability p [9], and therefore the accident probability Pac is independent of β.

When the extinction rate β is lower than βcp, the traffic systems exhibit a jamming state.
In the case of large bulk density, i.e., large values of α and β � 1, car accidents often occur
at the right boundary. The extinction rate β means the probability for the last car to leave the
system, and thus the average waiting time for the last car at the last site is T = 1/β [11].
During the time interval, the last site is occupied again by a car with probability 1 − p − β if
the safety velocity of the car increases. Thus, according to the definition of the occurrence of
car accidents, the probability Pac can be written as

Pac = p′(1 − p − β)/T = p′(q − β)β (4)

where q = 1 − p. Expression (4) shows that the accident probability Pac is controlled by the
extinction rate β and the probability of stochastic braking. Comparison of our prediction for
the probability Pac with computer simulations gives excellent agreement.

We also calculate the probability Pac in the case of vmax = 2. According to previous
studies of the phase diagram for vmax = 2 [14], the phase diagram shows strong similarities
to the vmax = 1 case, which include three states—free flow, jamming and maximum current
state—and, along the line α = 1, exhibits only a phase transition from the jamming state to the
maximum current state with increasing β. Therefore, the probability Pac for the case vmax = 2
shows similarities to the case vmax = 1 (these numerical results are not shown).

However, for vmax > 2, the probability Pac is different from that for the case vmax = 1,
due to variation of phase. Figure 5 shows the relation of the probability Pac to the extinction
rate β in the case of vmax = 5. With increasing braking probability p, the probability Pac

will decrease, especially for low values of β. However, in the region of high values of β,
the characteristic relations of the probability Pac to the extinction rate β above cannot be
observed. As shown in figure 5, when randomization probability p is smaller than a critical
value pc = 0.12, no car accidents take place, because the system is in the free moving phase.
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Figure 6. Effects of speed limit on probability Pac (scaled by p′) in the NS model in the case
p = 0.5. The case α = 1 is considered. The inset shows the relation of Pac to β in the region near
β = 0.75 in the case of vmax > 1.

But when p > pc, the maximum current phase of the systems is represented; thus, the value
of Pac tends to be invariable.

The stochastic braking p not only reduces the probability Pac, but also splits the degenerate
effects of the speed limit on the probability Pac. The relation of Pac to the extinction rate β

for different values of vmax is shown in figure 6. As shown in figure 6, when the value of
β is very small, the probability Pac shows a scaling relation and is independent of the speed
limit. In this case, the extinction rate β determines whether or not car accidents occur, due to
small traffic flow. However, when β is larger, different values of vmax correspond to those of
Pac in the case of stochastic braking. In the region of large value of β, Pac decreases with the
increase in vmax, as shown in the inset in figure 6. However, between small and large values
of β, Pac increases with increasing speed limit. An exception is the case vmax = 1 in which
the values of Pac are larger than those in the case of vmax > 1 and unchanged in the region
of large values of β. It is difficult to understand the relation of Pac to vmax. In principle,
formula (4) can be applied to the case vmax > 1 if the probability of a car to move from and
occupy the last site is known. But, in the non-deterministic NS model with vmax > 1, the value
of the passing rate is not equal to the extinction rate because of extended hopping effects.

4. Summary

In this paper, we study the probability for the occurrence of car accidents in the NS model
with open boundary conditions. Different from periodic systems, open systems in which the
car density is only a derived parameter are controlled by the injection rate and the extinction
rate. Because real traffic systems are usually open, it is highly desirable to investigate the
occurrence of car accidents in traffic systems both numerically and theoretically.

Numerical results show that the accident probability Pac in the case of p = 0 is independent
of the speed limit vmax and is controlled only by extinction rate β when extinction rate β is
smaller than a critical value βcv. Above βcv, no car accident occurs. However, when stochastic
braking is considered, the probability Pac decreases with increasing braking probability p in
the region of low value of β, while in the region of large values of β, the value of Pac tends to
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be invariable. Moreover, the feature that the probability Pac is only controlled by β gives us a
hint of how to effectively avoid the occurrence of car accidents in open traffic systems.

Stochastic braking splits degenerate effects of the speed limit on the probability Pac which
collapse into one line for various values of vmax. In the region of small values of β, the value
of the probability Pac is determined by the extinction rate β and is independent of vmax. In the
region of large values of β, Pac decreases with increasing vmax. However, between small and
large values of β, Pac increases with increasing vmax.

The relations of accident probability to bulk density in the deterministic NS model show
similar behaviour to those in periodic systems, but in the case of vmax = 1, quantitative
differences are observed, which imply different correlations between the two systems in the
process of car accidents.

A phenomenological mean-field theory is presented to describe the accident probability
Pac in the deterministic NS model. The probability Pac is proportional to the product of the
probability for the last car to move out of the system and the probability for a car to occupy
the last cell. Theoretical analysis can give results in agreement with numerical results when β

is below the critical value βcv. This expression is also applicable for the probability Pac in the
non-deterministic NS model with vmax = 1 when β is smaller than the critical value βcp. But
in the non-deterministic NS model with vmax > 1, explicit expressions which deserve further
investigation could not be obtained because of extended hopping effects.
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